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I. INTRODUCTION

The aim of this paper is to discuss ways of computing forecasts of the
aggregate price level p that are consistent with given projections of the future
levels of the money stock (M) and real output (). The calculation of such price
level forecasts becomes relevant now that many national authorities publish
medium-term projections for the money supply. Since the ultimate aim of
monetary policy is to create stable inflationary expectations, it is vital to know
which future path of the price level is implied by any proposed path for the
money stock. In this paper, no extraneous information will be used for the
computation of the forecasts, apart from historic data for p, M, and y; the
forecasts are based on a limited gquantity of information. In a static world,
therefore, it should not be hard to perform this particular problem in macro-
economic forecasting. One could use an "off-line" statistical method, such as
ordinary least squares or vector autoregression, to estimate the laws of motion
of p, M, and y and subsequently feed in projections for M and y to compute
the corresponding values for p. The residual variance of the ex-post "forecast"
errors would indicate the degree of precision with which genuine ex-ante fore-
casts could be made. !

How relevant the static version of this forecasting exercise remains in
a variable world depends upon the way in which the economic environment
varies. To facilitate the distinctions between different types of changes, 1 shall
first put forward an explicit model for p, M, and y in the next section of the
paper. The model will consist of an inverted demand for money function that
connects prices to money and output, a dynamic single-equation model for M,
and a similar model for . The model will then be used in section III to illustrate
the analysis of three types of events, each of ‘which implies a break with the
past.

The first type of event is that studied by Brunner, Cukierman, and
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Meltzer (1980). It leads to serially correlated forecast errors for p but does not
yet force agents to rethink the model they have been using to compute the
forecasts. The second and third types of events to be discussed require agents
to undertake a learning process for updating the forecasting formulas. The three
classes of events that will be treated in this paper far from exhaust all possible
ways in which a break with the past might occur. I shall mention briefly ad-
ditional radical changes of regime and attempt to argue why their consequences
cannot be analysed within the context of our simple model.

In sections IV and V of the paper I make an attempt to show how
Kalman filtering methods can be used to model the leamning processes that are
associated with the types of events that can be analysed with the model.
Quarterly data on money, real output, and prices from five Western European
countries and the United States are used for the empirical work. Section IV
shows how the Multi-State Kalman Filter (MSKF) can be used to simulate the
way in which agents learn about a restricted class of changes in the law of
motion of an exogenous variable. Section V is concerned with the Recursive
Prediction Error (RPE) method of Anderson, Moore, and Ljung that can be
used to model a learning process regarding transitory and permanent shifts in
the demand for money. Both the MSKF method and the RPE algorithm are
"on-line" methods, so that the forecasts and the parameter values generated
are purely ex-ante and do not require any information from time periods that
are yet to come, The paper terminates with a brief concluding section.

II. A THREE-VARIABLE MODEL FOR THE PRICE LEVEL

Exhibit 1 gives the three-equation model that will be analysed in this
paper. The central equation of the model is equation (2) that uses an inverted
demand for money function to connect the expected future price level in a
closed economy with expected values of the money stock and the level of real
output. (1-85) is the income elasticity of the demand for money, and 87 is

minus the elasticity of the demand for money with respect to the opportunity
costs of holding money as measured by the expected rate of change of the price
level, If the expected real rate of interest were constant, then -97 could also

represent the interest elasticity of the demand for money. I do not deny that
the fit of this inverted demand for money function over a historical period could
be improved by including observed values for interest rates in addition to the
term in expected inflation. However, such a procedure would only make it more
difficult to use the results for assessing the feasibility of forming medium-term

Exhibit 1. - a three variable model for prices, money, and output

state equations C§+1 = c? + 86 + GSA}'§+1 + 94‘“‘{ (D _—
e _ e e e ¢ method
P e FMpp1 Y1 Y0700 (D
observation equation  p,=p+ 0, (MM -0, ¥ +e,  (3)
auxiliary equations M§+1 ZME + M?ﬂ (4)
e e
W d = Pph I (5)
L“t‘+1 ! +1
expectations M?_I_l =ﬂ:1‘;+ (1'wM)(Mz‘M§) (6)
of exogenous MSKF
variables J7§+1 :J?i-*- ( l-t,by)(}"/r-)")?) (7) | method

meaning of symbols:

2] - the natural logarithm of the aggregate price level

M - the natural logarithm of the money stock

y - the natural logarithm of the level of real output

A caret " ™" indicates the relative rate of growth of a variable.

81, 04, 04, 05, 85, 67 and Yy, ‘l’y are parameters; agents learn about their

optimal values as time goes on. €, is a serially uncorrelated error-term.

projections of the price level, because our ability to predict movements in real
interest rates is still limited. Therefore I have limited the information set in this
model to data on money and output, past data on the price level and internally
generated rational expectations of future rates of inflation. This information
set can be appropriate for a model of a closed economy or an economy on
flexible exchange rates; in an open economy with fixed exchange rates, one
would want to include the rate of change of some foreign price index in the
information set that agents use to form their inflation forecasts.

Equation (2) is an inverted demand-formoney function in the levels
of M, y, and p. If the income velocity of money is subject to permanent shifts
over time, with the precise extent and the timing of such shifts unknown to the
econometrician, then estimation of an ordinary least squares equation in terms



of levels runs into difficulties. Thus, many researchers prefer to work with rates
of growth of M, y, and p, since permanent shifts in velocity have a transitory
influence only on the rate of change of velocity. (see Plosser and Schwert
(1978) for additional arguments in favor of working with differenced data).

However, a specification in terms of growth rates makes the estimation
of any lagged effects much more difficult. To see this, assume, for example,
that the time series model that connects two variables x and y is:

Hp=Xgq Ty
with u, a serially uncorrelated residual term
let x; be a pure random walk:

Xp=xp 1 TV,

with v, a serially uncorrelated white noise term.

If a researcher is unaware of the one period lag and mistakingly re-
gresses ¥, on Xx; instead of X1 he will still obtain a consistent and unbiased

estimate of the true regression coefficient, since
K=t up-vy

However, if the regression is run in first-difference form, then the coefficient
of Ax will only be 1 if the lag is specified correctly. A regression of Ay, on the

contemporaneous change in x, Ax, will produce a regression coefficient that
tends to 0:

Ayp=0.Ax,+ v, Fup-uyy

As in the case of the demand for money, we are often confronted with
both problems at the same time: permanent shifts of unknown magnitude and
timing in the "constant term" of our model if it is specified in terms of levels,
and lack of guidance from economic theory with respect to time lags that makes
it hazardous to work with differenced data. With the Recursive Prediction Error
method that will be discussed below we are able to work with levels, because
the "constant term" in our model can incorporate permanent shifts that may
occur.

Equation (1) explains the evolution over time of the "constant term"

in the inverted demand for money function. 96 represents a trend term about
which agents leam as time goes on. The term GSAyi +1 indicates whether the
expected path of velocity is income dependent. If 85 equals O, then the elasticity

of the expected demand for real balances with respect to expected real income
is unity. The final term in equation (1), 64€, has to be seen in connection with

the error term in equation (3). It shows which proportion of the unexplained
surprises in the price level is relevant for the prediction of next period's price
level.

Together, equations (1) and (2) are the ' 'state equanons in our model
They indicate the movement of the unobservable variables ct+1 and pt+1

An anchor is provided by equation (3), which is called an "observation equatwn
in the terminology of Kalman filtering. This equation shows how the observed
value of the current price level p, is related to the expectation pt that was

formed at the end of the previous period.. Part of the discrepancy can be ex-
plained by the current surprises in the two exogenous variables of the model:
My -M ) and (y; - yt) €, represents that portion of (p; - pt) which cannot be

explamed by these two variables.

Our model does not explore the interconnections between current
surprises in money, output, and all the relevant opportunity costs in the demand
for money. Therefore it is impossible to deduce on theoretical grounds the
signs of the coefficients of M -M¢ and y - »© in equation (3). If the predominant
effect of an unanticipated monetary surprise is to shift the aggregate demand
curve outward in an aggregate p - y diagram, then such a surprise raises both
output and prices beyond their expected values, and the sign of 61 should be

positive. If, however, the expectational errors (¥, - y?) are primarily caused by
unforeseen changes in productivity, these should be represented by unforeseen
shifts of the aggregative supply-curve along the aggregative demand-curve and the
coefficient ofyt -y“; should be negative. 61 and 6, do not have an interpretation
as elasticities and do not shed light upon the nature of the transmission process.
The observation equation has been extended with terms in (M, —M?) and (v -¥,)
only to sharpen the estimates of the state variable p? and the parameters & g3
66, 97, and 64 in the state equations. The discrepancies (p ;41 - p?_l_l) are the
final measure of the usefulness of this model in predicting future price levels;
the residuals of the observation equation €, serve to steer the evolution of the
state variables and the parameters. Details of the computational procedure are

given in section IV below.
Equations (4) and (5) are auxiliary equations that connect the expected



levels and the expected growth rates of M and y. Levels of variables are used in
the two state equations and in the observation equation that are to be estimated
with the Recursive Prediction Error method. Since the univariate models for
money and output compute expected growth rates of these variables (equations
(6) and (7)), the auxiliary equations (4) and (5) are needed to connect the two.

Equations (6) and (7) govern the evolution of expectations with respect
to money growth and output growth. This particular type of simple error-
learning process is appropriate if the actual growth rates of M and y follow an
ARIMA (0, 1, 1) process. As will be explained below, the Multi-State-Kalman
Filter not only allows us to learn about the current value of the state variables
M?H and Jﬁj?ﬂ but also allows for learning with respect to the parameter

values Yps and x,by. Moreover, the method allows for the values of Y, and v,!ly
to differ according to the magnitude of the current error M -M{; and jft - y‘;

In other words, the MSKF algorithm can cope with situations in which small
errors in predicting money growth or output growth have to be incorporated
almost one-to-one into the revisions of expected future growth rates (y close
to zero), whereas any exceptionally large prediction errors that might occur
should not be incorporated one-to-one into the expected growth rates, being
more temporary ( close to one).

As the layout of the model in Exhibit I shows, the problem of forming
rational forecasts of the two input variables M and y is considered prior to the
problem of computing optimal forecasts of the expected future price level. An
alternative procedure would be to compute forecasts of the input variables
jointly with forecasts of the endogenous variables of the model. I have not
followed the simultaneous approach, since to do so would violate to some extent
the assumption that M and ¥ are exogenous input variables. The problem to be
considered in this paper is that of forecasting price levels for given projections
of money and output. This setting does not allow for feedback from prices to
money and output, and therefore the expectations of future money growth
and output growth have not been calculated in a simultaneous multivariate
context.

III. DIFFERENT WAYS IN WHICH THE WORLD MAY CHANGE

Throughout this section I shall assume that economic agents are aware
of the current values of the parameters 6, 32, 84, E)S, 66, 97, and the parame-

ters Yy, and Y, in the models for M€ and »¢. Agents are also aware of the

current variance-covariance matrix of these parameters and of the variance in

the error term €, They do not possess any insight into the future plans of the

monetary authorities, and all the new information they get is limited to the
current values of p, M, and y. Consequently, they can learn only about any
changes that may have occurred through deducing their nature from the patterns
over time of the prediction errors Mt - M? and p; - ﬁ? and the model errors ;.

Within the context of our simple model, the following three types of
unexpected events can be profitably studied:

1. A purely temporary change in the mixture of transitory and permanent
shocks that determine the evolution of]ﬁft andfor ;.

2 A permanent change in the relative importance of the transitory and
permanent shocks that govern the behavior of M, andfor j’r'

3. A permanent change in the relative importance of temporary and
permanent shifts in the inverted demand for money function, equation
(2).

These three types of events will be studied in some detail, and the empirical
work in sections IV and V will show how the leaming processes necessitated
by these events can be modelled. The present section will conclude with a
brief discussion of some radical types of events, such as the mdney supply
process getting into a "higher gear," or a qualitative change in the inflationary
process. Such events are frequently discussed in the literature; for example,
in connection with the dynamic stability of the demand for money, but I shall
argue that they are out of bounds within the context of the present model,
because they would involve a learning process that requires changes not only
in the value of the parameters but also in the specification of the demand for
money function.

Type 1 i
A purely temporary change in the mixture of transitory and permanent
shocks that determines the evolution of M; and/or J)t This type of event is

best studied when writing the ARIMA (0, 1, 1) model in the Kalman filter way:

My=M; g +np ¢ (8)

M=M,+ ey, ©)
€M ¢ and M, Are mutually independent and serially uncorrelated error terms.

A similar two-equation model can be written down for ﬁr. In these Kalman
Filfar 10 Lo oY oot otate equation that shows how the unobservable



expected growth-rate of money moves as a pure random walk over time,
Equation (9) is the observation equation that shows how the actual growth-rate
of money anchors the expectational values. The connection between equationg
(8) and (9) with the first order moving average model becomes clear when we

shift equation (9) one period backwards and subtract the result from the original
equation (9). We get:

AM ;= My-My 1)+ ey -€pg 1.1 = T, 1T €M, 7€M 2-1 U

It follows from equation (10) that the autocorrelation function (ACF) of
AM; must be zero for all lags greater than one. The corresponding time series

model, therefore, must be the first order moving average model:
AM, = (1 - yBa, (11)

Here,  is a constant moving average parameter and the a, are the noises that

drive this time series model. Box and Jenkins (1970, 122-125) show how a
comparison of the ACFs of (10) and (11) results in an equation expressing the
value of  as a function of the variances of €y , and n4 .

As long as the ratio of the variances of €3 ; and mpy ; does not change,

both the Box-Jenkins model (11) and the Kalman filter model (8) and (9)
produce serially uncorrelated errors. Assume now that there is a purely tempo-
rary deviation from the usual patterns of the shocks. A useful example would be
the simultaneous occurrence of an exceptionally large value for the permanent
shock 7, and a zero value for the transitory shock e, after which both noise
terms return to normal. This particular case of a temporary aberration is studied
extensively by Brunner, Cukierman and Meltzer (1980) within the context of a
model that incorporates more markets than the one-market model of section
II but is constructed out of building blocks similar to those I have employed.

period n €
0 normal normal
1 large 0
2 normal normal
3 normal normal
n n n

With  between zero and one, the above sequence of shocks must result in
serially correlated forecast errors for M, because agents are not aware that the
large shock in period 1 is of a purely permanent nature. Thus, as is stressed by

Brunner, Cukierman, and Meltzer, a single event gives rise to a series of corre-
lated errors:
Evidence of ex post serial correlation in a particular sample
is not evidence of inefficient use of information. Rational
agents, looking back on the period, find support for the hy-
pothesis that a large permanent shock occurred but was
misperceived at the time. (Brunner et al,, p. 486)

Brunner, Cukierman, and Meltzer show how an unavoidable confusion between
transitory and permanent shocks helps to explain why real wages appear to be
"sticky," and why a single unexpected event that is misinterpreted by economic
agents can lead to a lengthy period during which the actual unemployment rate
deviates from the natural rate.

A leaming process takes place, of course, with respect to the correct
value of the underlying, permanent growth-rate of the money stock M £ How-

ever, as long as the event described above occurs in isolation, there is no need
for agents to update their estimate of the moving average parameter y. Only
if the frequency with which this type of event occurs increases will agents have
fo revise their estimates of the variance of the permanent shocks and will their
estimate of W change accordingly. But then we have reached the next item on
our agenda: an event that permanently alters agents' perception of the law of
motion for an exogenous variable.

Type 2
A permanent change in the relative importance of the transitory and
permanent shocks that govern the behavior of M ; and/or y,. This second type of

change can occur in at least three ways:

First, it is possible that agents perceive that the variance of their fore-
cast errors in predicting the growth-rates of money and/or output has increased;
second, they may have doubts about the purely incidental character of a change
of the first type described above and, therefore, wish to adapt their prior proba-
bilities regarding the expected future variances of € and n; third, agents may
find that their current estimate of ¥ is no longer optimal and that a different
value for the parameter results in forecast errors that better approximate serially
uncorrelated white noise.

In all three cases, it remains correct to describe the evolution of M ' and

5’; by means of an ARIMA (0, 1, 1) model. There is a quantitative change in

that the optimal value of the moving average parameter and/or the estimate
of the residual variance changes, but there is no qualitative change to another
time series modei. Similarly, the simple Kalman filter of equations (8) and (9)



can still describe the laws of motion ofMt and ﬁr; it is only the variances of thg

transitory and/or permanent noises that have changed. As a consequence, ona
important property of this particular time series model has been preserved,
namely, the fact that there is a constant term structure of expectations for Me
and 3¢, It follows that a constant term structure of expectations for 13‘; is also
preserved (see Bomhoff, 1980). Agents are unable to foresee any changes in the
expected rates of growth of money, output, and prices.

This feature of a flat term structure of inflationary expectations leads
to important and welcome simplifications in the demand for money function,
In theory the current demand for money holdings should depend on the ex-
pected rate of price change between now and period #+1, between periods
t+1 and 7+2, between periods t+2 and 743, etc. (see Motley, 1967; Brock,
1972, 1974). With a constant term structure of expectations, this whole string
of expectational variables collapses into the single representative expectation
33‘;_1. Thus, we can limit the substitution margin in the demand for money

function to just the expected rate of change of prices between the current and
next period, and it is only this single term that has been included in our inverted
demand for money equation (2).

The specification of the inverted demand for money function remains
the same, but an event of this second type will affect the magnitude of the
estimated parameters, both in equation (2) for the expected values of the price
level and in equation (3) for the differences between expected and actual price
levels. As a matter of principle, it should be possible to deduce the changes in
these coefficients from the changes in the stochastic processes for Mr and of

V4 One would have to formalize the appropriate intertemporal maximization

problem and to view the parameters that govem the law of motion of the
exogenous variables as constraints upon this optimization problem. Within this
context, the demand for money function would have the status of a lower-level
"decision rule" (Sargent, 1981), and it should - in theory - be possible to deduce
the parameters of the demand for money as functions of the parameters of
preferences, technologies, and constraints in the intertemporal maximization
problem.

At the present state of the art, it is feasible to perform exercises in
comparative statics with stochastic equilibrium models, but it does not yet seem
possible to simulate the leaming process that must occur during the transition
from one state to another (see Sargent, 1981, for the reasons why learning is
hard to incorporate within the stochastic equilibrium models). However con-
venient it may be for econometric and theoretical reasons to abstract from
learning processes, it may still be worthwhile for economic reasons to incorpo-

te a suboptimal learning mechanism if the behavior of the exogenous variables
a t F . .
; shows that there is much to be learned. The adaptive estimates of

over time - ) . . .
? 7 be discussed in the next section show that rational
M? and ¥ " to be

the models for . _
agents would continuously have to ad%ﬂq;t their eestlmatas of Yy and ¢, and the
residual variances in the models for M i and ¥ The dynamics of the money

supply and of real output were changing, and therefore the Parameter% in the
inverted demand for money function (2) and the observation equation (3)
must have been changing as well. Something has to give: either the cross-
equation restrictions between equations (6) and (7) and equations (1) - (3),
or the incorporation of learning processes. I have opted to neglect the cross-
estrictions, because the data for the two exogenous variables show so

equation r 1 ; . . _
clearly that the laws of motion for M and ¥ were changing during the period

under review (1961-1978).

The parameters 0 - 87 must change over time as agents learn about
the laws of motion of the exogenous variables. However, the general specifi-
cation of equations (2) and (3) remains correct; in particular, the restriction

: ; g
of the term structure of inflationary expectations to the single term p 42

Events of this second type are thus admissible within the context of the model.

Type 3
- A permanent change in the relative importance of the temporary and
permanent shifis in the inverted demand for money function, equation (2)
It is unavoidable in empirical macroeconomics that not all factors determining
the movements of a macroeconomic variable can be modelled satisfactorily.
The demand for money, for example, is influenced by changing payment habits
and by technological developments in the financial sector, but it is far from easy
to find quantitative time series data that represent these developments well.
The researcher has to take recourse in less-than-perfect proxy variables, or he
has to assume that the constant term and/or any deterministic trend terms in
his model will serve as stand-ins for the omitted variables.
Assume, for instance, that one wishes to explain variable y and that
guantitative data are available for two important exogenous influences, x4 and

X9. All other factors that influence y have been subsumed in the constant term

¢ and a linear deterministic trend ¢, so that the researcher estimates the following
regression equation:

yt = +a1x1,t+ a2x2’t+ a,3f+€r

If this equation is estimated by simple or generalized least squares, then the



constant term ¢ is treated as just one more parameter, namely, the coefficient
of a fictitious variable that takes on the value 1 at all times. The role of c,
however, is to stand in for all the nonspecified influences on y, and, therefore,
it would be more appropriate if ¢ were regarded as an unobservable exogenous
variable. Proceeding further, a natural assumption would be that the time
series behavior of ¢ is similar to that of the observed exogenous variables xq

and x. If, for example, x| and x, are nonstationary time series, then it would
seem logical to assume that the unobservable exogenous influences proxied by
¢ are nonstationary also.

The Recursive Prediction Error algorithm is capable of estimating both
the values of regression parameters, such as aq, ay and as. and of producing
an estimate of the current positions of one or more unobservable variables
such as c. The time series properties of the "constant term” can be specified to
conform either with the time series properties of the observable exogenous
variables, or to agree with the researcher's prior notions of the evolution over
time of the unobservable variables that ¢ is meant to represent. Here I have
modelled the "constant term" as a random walk, augmented with a trend term
plus a term that allows for an influence of the expected increase in real income:

e _ e e
Cir1 _C[+66+65Ayt+]+94ef (D

The RPE algorithm provides recursive estimates of B4, 05, and 0 that reflect

ongoing leaming about the correct values of these parameters, 84 indicates

the relative weights of the transitory and permanent shifts in expected velocity
that are not explained by yiﬂ and 13;_1. If 64 is zero, than any current

inexplicable errors in predicting the price level p, are of a purely temporary
nature and do not lead to adjustments in the predictions of future price levels.
If 0 418 equal to 1, then the error in the observation equation € is incorporated

fully into the path of expected future price levels. With 64 > 1 the errors €
lead to more than proportional corrections for p§+ 1 .1
Just as in the case of type 2, changes in the estimated value 64 should

be accompanied by changes in the other coefficients of equations (2) and (3).
But, since the change is not of a qualitative nature - the unobservable variable
c? remains a pure random walk plus trend - the original specification of
equations (2) and, (3) should still be correct. Only if the time series process for
c? did change - for example, if c? became constant over time - would it become

1Qur algorithm constrains 94 to lie between O and 2 in order to ensure stability (see Moore
and Weiss, 1979).

necessary to return to first principles to investigate whether the forms of
equations (2) and (3) were still correct or whether the intertemporal maxi-
mization problem that underlies the decision rule for money holdings would
require a different specification for the demand for money. A leaming process
with respect to 8, is not such a break with the past that it would require a

different demand for money function and is, therefore, admissible within our
model. Changes in 6,4 are accompanied by changes in 04, 05, 85, 04, and0 7;

once again the cross-equation restrictions emphasized by Sargent and others
have not been imposed because these are not suitable in a context of learning.

Inadmissible Experiments

The demand for money function is - in the terminology of Lucas and
Sargent - a "decision rule," derivable at least in principle from some higher-level
intertemporal maximization problem. The specification of this decision rule
already tells us much about the constraints under which economic agents maxi-
mize their utility. If, for example, consumers live in constant fear of hyper-
inflation, then their demand for money holdings would depend not only on the
expected rate of inflation in the immediate future, [J?ﬂ, but also on a whole

string of expectations with respect to the price level in later periods. As soon as
4 researcher decides to limit the term structure of expectations in the demand-
for-money function to just the expected rate of inflation between now and the
next period, he has implicitly decided already that agents base their decisions
on a term structure of inflationary expectations that can be represented by the
single expectation, ﬁ? +1° Having opted for that particularly simple form of the

demand for money, the analyst has to abstain, in my opinion, from certain
thought experiments, such as what would happen if agents came to expect a
long-term systematic acceleration in the money supply or agents became fearful
of a self-propelling hyperinflation (see Bomhoff, 1980, Chapter 5). If the prior
probability of such events were different from zero, then one could only con-
clude that the demand-for-money function had been specified incorrectly and
should contain a more complete term structure of inflationary expectations.

The intertemporal stability of the relationship between money and
prices has to be investigated within the context of Motley (1969) and Brock
(1972) and not with a given demand-for-money function that is confronted with
different assumptions about the money supply or the dynamics of inflationary
expectations. A demand-for-money function that omits the term structure of
inflationary expectations is incompatible with assumptions about the money
supply that allow for the possibility of explosive growth over any length of time,



and is incompatible also with speculation about self-propelling take-offs into Table 1

hyperinflation. An Illustration of the MSKF Algorithm
Expected Growth Rates of the French Money Supply

IV. LEARNING ABOUT TRANSITORY AND PERMANENT SHOCKS WITH || prior Probabilites o the next shock (percent)
THE MSKF-METHOD Actual Expected Error small small outlier outlier
permanent temporary permanent temporary

Expectations of the growth rates of the two exogenous variables M 1968-TV  2.11 3.13 -1.02 3.4 91.6 0.1 4.9
and » have been computed using Kalman Filters and the auxiliary equations 1969'}I ig; g;g '8'1"3 2‘3 ggé g'_‘: i'g
(4) and (5) of the model in Exhibit I subsequently connect these expected o 1.85 2.44 0.58 9.5 85.5 0.3 4.7
growih rates to expected future levels of the money stock and real output that ; :V (1)'42;; if; ‘3'32 g-; gg-'l" g-‘; :-g
. . 1970- i A 0. E . £ s
are needed for the state and observation equations of the model. The expected I 2.82 1.97 0.86 4.9 90.1 0.1 4.9
rowth i i i i : : m 277 230 0.47 10.4 84.6 0.2 4.8
growth rates are, aslls customary with K.alman ﬁl.terulag, determined recu.rsw'ely, 5 SR 3% o e 0 Py
the forecasts for period ¢ are computed without using in any way the realizations 1971-1 4.58 2.62 1.96 8.2 86.8 3.5 1.5
of the time series for periods ¢+1 and beyond. In this res i o 4.22 4.38 0.16 12.5 82.5 L6 34
2 > . S respect Kalman _ﬁlter 11l 3.89 4.62 -0.72 139 81.1 3.0 2.0
methods are comparable to methods such as adaptive expectations with a v 4.24 4,28 0.03 12.9 82.1 2.6 2.4
fixed coefficient or to moving average methods. All such "on-line" algorithms 1972-1  3.75 4.26 051 13.7 813 2.7 23
. ; . B . £ Ji | 5.02 4.12 0.90 9.5 85.5 24 2.6
imitate the actual formation of forecasts by economic agents - who have to m 498 4.37 0.61 15.1 79.9 2.8 2.2
. _— . 2.5

base their predictions on the past and cannot make use of futur = v 3.84 4.53 .70 10.1 84.9 2.5
" " o P 5 eI Shastrakion 1973- 1 0.93 431 -3.38 15.5 79.5 2.8 2.2
better than “off-line” methods such as autoregressive least-squares or Box- o 4.84 2.75 2.9 13.1 81.9 0.2 4.8
Jenkins models that use data from the complete sampl iod. nm - 2.9 435 -1.39 10.7 84.3 0.7 4.3
> . m e Omp,Ete ample period . v 3.86 4,01 0.15 11.0 84.0 0.5 4.5
The so-called Multi-State-Kalman filter (MSKF) (Harrison and Stevens, 1974-1 3.75 3.99 20.24 11.2 83.8 0.6 4.4
19 "on-line" i i i 434 3.93 0.40 11.0 84.0 0.6 4.4
71, 1976) goes beyond othelr on ]m‘e methods, since it allows for feedback Siv  aan .01 174 96 85.4 0.5 4.5
from the data to the forecasting algorithm. A number of separate fixed filters IV 4.68 3.67 1.01 6.7 88.3 0.4 4.6
. . 4 46

are applied to the data, and th c c ; 1975-1 3.65 3.94 0.29 73 87.7 o0
pp , and the forecasts are computed as a weighted average i o0 358 110 ot e oo 46

of the forecasts from the individual filters, with weights that are adjusted over
time according to the success of each separate filter over the recent past. The
composite forecasts therefore are both recursively determined and adapt to new
information about the law of motion of the exogenous variable: The MSKF-
method can cope with changes over time in the probability mixture of perma-
nent and transitory shocks. Brunner et al (1980), Meltzer (1981) and Cukierman
and Meltzer (1981) have emphasized the relevance of the simultaneous oc-
currence of permanent and transitory shocks in their theoretical work; empirical
applications in economics include papers by Lawson (1980) and Bomhoff and
Korteweg (1983).

Table 1 illustrates the working of the MSKF algorithm. The first
column contains a segment of one of the time series used in this paper: the ‘
actual growth rates of the French money supply (M2) between late 1968 and ‘
mid-1975. The complete input series starts in 1961 I, and expectations are
computed with the MSKF algorithm beginning in 1961 IV. Thus, the segment ‘
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in Table 1 shows the operation of the method at a time when any transient
influences from the initialization conditions have disappeared.

The second column shows the expected growth rates as calculated
with the filter, and column three indicates the resulting forecast errors. The
predictions are weighted averages of four distinct forecasting models. Each
model can be written in the form of equations (8) and (9) as on page 13.

My=My | +mpy 4

My=M,+ ey 4

The models differ in the values that have been assumed for the variances of
ey s and myy 4. The first two of these four models are appropriate to "normal"
situations; the remaining two models are designed to deal with outlier situations.
The following values have been assumed for the variances of € and 7 in the
four Kalman filters:

state W Var 7 Var € Vara,
small permanent 0.05 0.9025 0.05 1
small temporary 0.95 0.0025 0.95 1
outlier permanent 0.01 15.6816 0.16 16
outlier temporary 0.99 0.0016 15.84 16

The first column indicates the values for the parameter  in the corre-
sponding ARIMA (0, 1, 1) model:

AM, = (1 - yB)ay (11)

I have assumed that the variance of the outliers is sixteen times as large as the
variance of the process during "normal” periods. The "normal" value of the
variance has been set equal to 1.0 in the chart above to facilitate inspection of
the relative variances of e and %; during estimation a robust estimate of the
variance of a, is adaptively computed from the forecast errors. Statistical
Appendix A gives further details about the computation of the univariate
expectations with the MSKF method.

The final four columns of Table 1 indicate the prior probabilities of
the four different simple Kalman filters as they are recomputed each period
after the observation of that period's growth-rate of the money supply. The
priors have been constrained so that the sum of the prior probabilities of the two
"normal" models is constant at 95%, which leaves a 5% probability for the two

outlier models. The numbers on the first line of the Table indicate, for example,
that after the final quarter of 1968 both normal-sized shocks to the growth-
rate of the money stock as well as any exceptionally large disturbances were
considered to be largely temporary. A large forecast error is made, for example,
in 1969 IV, with the actual growth-rate 2 percentage points on a quarterly
basis below the expected growth rate. When the priors have to be adjusted
after this shock, it is too early to tell whether this outlier will prove to be
permanent or transitory, and therefore we see little change in the prior proba-
bilities of the two outlier models.

When the actual growth-rate for 1970 I has been observed, it becomes
clear that the outlier in 1969 IV was temporary: the prior probabilities of the
{wo outlier models change with an even larger weight being attached now to the
temporary outlier model. The four prior probabilities subsequently change
little until a new outlier occurs during 1970 IV. The forecast for 1971 I confirms
that the outlier is assumed to be more temporary then permanent, since less
than 10% of the forecast error in 1970 IV is incorporated into the expected
growth-rate, which increases only from 2.48 to 2.62. However, when agents
observe the actual growth rate in 1971 I, they realize that the change in money-
growth that occurred during 1970 IV was of a permanent nature, and thus the

'weight of the permanent outlier model increases sharply. The prediction for

1971 1I reflects this, and so does the prediction for 1973 II, when it is assumed
that the sharp drop in 1973 I is partly permanent: the expected growth de-
creases from 4.31 to 2.75 only.

This data segment shows nicely the changes in the prior probabilities
of the two outlier models over time according to whether the most recent
outliers have been permanent or transitory. Less visible to the naked eye are the
causes for shifts in the priors of the two Kalman filters for normal-sized errors,
but it is obvious that a learning process is going on with respect to these priors,
too.

Table 2 shows the success of the MSKF filter in predicting the quarterly
growth-rates of money (M2) and real output in the six countries studied in this
paper. All European data have been taken from the recent study by Den Butter
and Fase (1981) of the demand for money in eight European countries. Den
Butter and Fase also investigate the demand for money in Denmark, Ireland,
and the United Kingdom, but the time series data for these countries cover
considerably shorter periods of time. For that reason they have been discarded
for the current analysis which is limited to the five countries listed in Table 2.
The United States data were provided by the Federal Reserve Bank of St. Louis.

Growth-rates have been computed as first differences of natural loga-
rithms, but all error statistics have been multiplied by 100 in order to achieve




Table 2

Residuals of the Univariate Models

1) @ 3) @ 5)
ex ante forecast ex-ante ex-ante expost errors ex-post
errors errors errors of ordinary least errors
; €~ -€ _ - - -
MSKF-algoxithm X, =X, X, = mean (x') squares x: = mean (xr)
(presample (no correction for  (sample period)
period) degrees of freedom)
Money
Belgium 1.54 1.96 2.21 152 1.77
France 1.13 132 1.16 1.02 1.15
Genmany 1.82 2.13 1.91 1.55 1.82
Italy 1.11 1.41 1.65 1.06 139
Netherlands 2.09 223 223 1.82 1.99
U.S.A. 0.50 0.52 0.82 0.41 0.53
Output

Belgium 1.45 2.12 1.42 1.34 1.40
France 1.46 1.67 1.40 1.28 134
Germany 1.35 1.53 1.21 1.20 1.19
Ttaly 1.83 2.25 1.66 1.52 1.64
Netherlands 1.89 2.83 1.78 1.77 1.77
U.S.A. 1.00 1.15 1.11 0.90 0.98

»~

comparability with errors that are expressed as a percentage. Data on the levels
of money and output are available from 1961 1, so that growth-rates can be
computed beginning 1961 II. The MSKF filter looks back at the latest two
observations when the prior probabilities are updated, so that the first expected
growth-rate is that computed for 1961 IV (see Harrison and Stevens, 1971,
1976, for details on the computation of the posterior probabilities; and Lawson,
1980, for the Bayesian manner in which the priors are updated). The period
terminates with the final quarter of 1978 for the European countries; the
statistics for the United States refer to this same period, with an exception for
Table 8 below.

During the first part of the period, the expectations are influenced
by the way in which the prior probabilities are set initially and by the initial
estimate of the "normal variance" of the process. In our implementation the
filters are initialized automatically and in an identical way for all time series
(see Bomhoff and Kortweg, forthcoming 1983, appendix 2, for details). The
initial estimate of the normal variance of the process contains an ex-post ele-
ment, since it is based on the first ten observations.

In order to minimize the transient effects of the manner in which the
filter is initialized, 1 have disregarded the first five years of the resulting series
for the expected growth-rates when computing the standard errors of the fore-
casts in the first column of Table 2. The numbers in all the remaining columns
of the Table refer also to the final 49 observations of the sample. Columns 2
and 3 show the ex-ante errors of two simple naive models: column 2 shows the
errors made when the last observed value for the growth-rate is taken as the
expectation for the next period, and column three shows the errors made if
one uses the mean of the first 22 observations as an estimate of the growth-
rates for the remaining 49 periods. Column four shows the ex-post residual
errors of an ordinary least squares regression, estimated over the whole sanmiple
period, in which the growth-rates of money and output are regressed on a
constant term plus their own growth rates, lagged 1-6 periods. The final column
of Table two shows the root mean square error of a naive ex-post model that
puts each expected growth rate equal to the mean growth rate over the period
under investigation. The Table shows that our version of the MSKF filter pro-
duces reasonable forecasts for the growth-rates of the money supply in the six
countries. The MSKF algorithm leads both ex-ante naive models and performs
roughly as well as the ex-post naive model.

Less satisfactory are the results of the six series of the growth-rates
of real output. One way to improve the results might be to construct multi-
variate expectations of the growth-rate of real output that incorporate explicitly
one or more of the determinants of the business cycle.




Clemens J.M. Kool and 1 are currently working on these problems, We
also plan to investigate whether one additional "level" (JTacobs and Jones, 1980)
needs to be incorporated in the Kalman filter models. We presently limit the
types of shocks to transitory and permanent shifts in the growth-rates, but it
may be necessary to allow for transitory shocks to the level of the series. More
experiments are needed to determine the ideal form of the MSKF algorithm
for macroeconomic forecasting; the effort should be worthwhile, since the
MSKF method produces forecasts that (1) are purely ex-ante, (2) incorporate
a leaming mechanism, and (3) can deal with situations in which most small
shocks are transitory and most large shocks permanent, or vice versa.

V. LEARNING ABOUT VELOCITY WITH THE RPE-ALGORITHM

In this section I discuss the way in which expected future values of the
price level are computed for given expectations of future levels of the money
supply and real output. The estimates are made recursively, and predictions
are thus purely ex-ante. In the course of each period f agents discover the
current values of the money supply, the level of real output, and the price level.
A fraction of the ex-post prediction error, which they now know was made
when predicting the price level p,, can be assigned to the prediction errors in

the two exogenous variables: (M, - M?) and (y[-y‘:f). The remaining unexplained
part of the prediction error is called €; (see equation (3) in section II above).
Each non-zero value for €, leads to adaptations of the current values of the
parameters of the model. The adjusted values of the parameters 04, 69, 84, 05,
0, and 67 are used to compute a forecast for ¢+ 1 that is based also on the

expectations at time ¢ of the levels of money and output in that next period

(M?ﬂ, y?ﬂ). The prediction is made with the two state equations from the

model, equations (1) and (2):

e I (s

Cop TC; T 048,058V + 0 M
e . e e ~ €
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The ex-ante prediction eIrorp - pfﬂ is a measure of the success of the model
in predicting price levels. However, it is the ex-post residual €; from the obser-

vation equation that is used to steer the evolution of the model parameters over
time:

pe=ri+0 (M -MY) 090 Y) + € 3)

The Recursive Prediction Error method has been developed by Ljung
(1977, 1978), and by Moore and Weiss (1979). It is closely related to the Ex-
tended Kalman Filter method (see Anderson and Moore (1979), Goodwin and
Payne (1977)).2 Statistical Appendix B contains the principal features of the
algorithm that I have used for this paper. The only other application of the
RPE method to a macroeconomic problem that I am currently aware of is a
paper by Burmeister and Wall (1980). These authors are not concerned with
ex-ante predictions or adaptive learning processes, however, and focus attention
upon parameter estimates based on repeated runs through the data, both
forward and backward.

The RPE method requires initial estimates of all parameters and of their
variance-covariance matrix. Clemens J.M. Kool and I have used an ordinary
least squares regression:

_ e . e ‘ e e
prﬁcf+1.Mr-1,yt +81(Mt_Mf)_B2(yt_yt)+96'r

over the period 1961 IV - 1966 1 in order to find initial estimates of 0, 8-,
86, and ¢. The initial variances of 01, 62, and 66 are taken also from this least
squares regression. 84 is initialized at a value of 1.0 with a standard error of
0.5; 65 has an initial value of zero with an initial standard error of 0.25. Finally,
6 has been initialized both at 0.0 and at 0.19, the latter value being the average

interest elasticity of the demand-for-money functions estimated by Den Butter
and Fase for the five countries under review. In both cases, the standard error
of 67 has been initialized at 0.095. As the starting value of 6 had a minimal

effect on the results, I report only on the estimates that used a starting value of
0 for 6.

The covariance terms between the parameters were initially set at
zero, In the course of the RPE estimation, all parameters and the variance-
covariance matrix are updated after each period, according to the formulas given
in Statistical Appendix B, taken from Moore and Weiss (1979). The required
partial derivatives of the state variables and the residuals with respect to the
parameters are calculated analytically. Estimation with the RPE algorithm
starts at 1963 IV and continues until the end of the estimation period in 1978

2The early work by Peter Young and associates is very useful on the relationship between
recursive least squares and Kalman filtering; see Young (1974), Young, Shellswell, and Neethling (1971),
and Young and Whitehead (1975).



IV. All error statistics have been computed over the period 1966 IV through
1978 IV, during which the algorithm generates purely ex-ante forecasts,

The Results

Table 3 shows how the parameters 65, 91, 62, and67 change between
the starting points of the RPE algorithm and the final year of the estimation,
Printed below each coefficient is the square root of the corresponding element
on the main diagonal of matrix P*, the inverse of the Information Matrix
(see Anderson and Moore, 1979). The numbers in the Table can thus serve

to indicate the degree of variability of the estimated parameters. Some note-
worthy features of this Table are:

The final estimates for the coefficients of (M, - M7) and (v, - ¥$)

are closer together than the initial estimates. Apparently there are similarities
between the six countries that are not captured by the initial least squares
estimates but become visible as learning proceeds.

The coefficient of Exf_l_z turns negative for all six countries if 13§+2

is measured as:

o ) . g
Porp = EPpyg -Ep g =4x {%*Mﬁz‘(]‘gs)yﬁz} L

which is the original specifications of the model. The coefficient 64 is sometimes

positive and generally insignificant if [J?_I_z is measured over a 4-quarter span
and proxied by:

- — e
Pera=EP o Pra

=Cf 050 YD H W+ Mg ¥ -pY I
Possibly these results tell us something about the difference between the short-
run liquidity effect and the longer-run inflationary effect of a surge in money
growth, but any interpretation is hazardous, both because of the presence of
(yt - y?) and (Mt -M?) in the observation equations and because the model does
not include a theory about changes in the real rate of interest.

Tables 4 and 5 show the learning processes that take place with respect
to the trend parameter 6 and the "constant term" ¢€. Values are presented for
10-quarter intervals. Note that the trend ¢ has been assumed to be represen-

table by a parameter about which agents learn more as time goes by, whereas

Table 3

Adaptively Estimated Parameters

e
country

Belgium

France

Germany

Ttaly

Netherlands

U.S.A.

coeff, of Ayﬁ_ 1 coeff, of (M-Me)t coeff, of - (y-ye)r coeff. of p 5
4 o ) 7
start 1978-11 start 1978-I11 start 1978-111 start 1978111
0.0 -0.0567 0.4007 0.4936 0.9994 0.5080 0.0 0.1169
(0.2500) | (0.1387) (0.3072) | (0.1005) | (0.2229) | (0.1130) | (0.0950) (0.0717)
0.0 0.1862 0.8542 0.4953 0.8160 0.5171 0.0 -0.1367
(0.2500) | (0.1280) (0.6596) | (0.1107) | (0.3352) | (0.1112) (0.0950) | (0.0677)
0.0 0.0733 0.4822 0.6071 0.5416 0.4799 0.0 -0.1751
(0.2500) | (0.1051) (0.2360) | (0.0743) | (0.1003) | (0.07 16) | (0.0950) | (0.0525)
-0.1561
0.0 -0.0036 0.0232 0.3466 1.5563 0.5089 0.0 i
(0.2500) | (0.1319) | (0.4327) | (0.1316) (0.4328) | (0.1194) | (0.0950) (0.0601)
0 -0.1016
0.0 -0.0491 0.8337 0.5023 0.9493 0.6843 0.
(0.2500) | (0.1328) (0.3746) | (0.1149) | (0.1513) (0.0913) | (0.0950) (0.0750)
0.0 -0,1489
0.0 0.1129 0.6328 0.5756 1.0505 0.5514
(0.2500) | (0.1063) (0.4222) | (0.1903) (0.2420) | (0.1164) | (0.0950) (0.0667)




Table 4 : .
e the "constant" term is an unobservable state variable that does not converge

Evolution of the Trend Term, § ¢ to a final value but continues to behave like a random-walk-plus trend.
Table 6 shows the evolution of parameter 4. The activity of this

parameter relates to the third type of change discussed in section III above.
country 1966-1 1968-T11 19711 19731 : : ; ite initi

Biil 1976-1 1978111 The final value of the parameter differs considerably from its initial value for
Belgium and Germany, which indicates that it is worthwhile to incorporate a

Belgium 0.32 030 0.31 030 0.29 0.28
(0:08) learning mechanism about the relative importance of transitory and permanent
France 0.58 .0.58 0.56 058 0,59 :h shocks to the demand for money.

0.10) Table 7 shows the prediction errors of the RPE algorithm and compares
the errors to the standard errors of two naive models for predicting the price

Germany 0.37 036 0.36 0.35 0.35 035
(0.05) level:
Italy 0.31 0.32 033 035 035 036 =
(0.09) Py =P
Netherlands 0.80 0.78 0.78 0.78 0.75 0.74
©11) Pi=pt PryPp)
US.A. 0.76 0.76 0.76 0.76 0.76 0,76
(0.04) Part I of the Table gives summary statistics for the two naive models. Part II
Note: all entries have been multiplied by 100 indicates the forecast errors of the model that was used also in Tables 3 through
6. On average, the errors are 1% times as large as those of the best naive model:
pf “Pp] =P Py This shows that the relationship between the money stock
and the price level, although primarily a phenomenon that is relevant in the
Table 5 longer-run, is nevertheless useful for very-short-run forecasts and not that much
poorer than forecasts that exploit the inertia in the actually observed rate of
The Evolution of the “Canstant Term"” o® change of the price level.

Parts 11 - V of Table 7 provide information about the marginal contri-
country 1966-1 1968111 19711 1973-I01 19761 1978-11 butions of 7 - ¢ and M - M® to the forecasts of p,.1. A comparison between
Belgium 5.399 5.359 5.411 5224 _— Sits Parts 111 and IV shows that knowledge abciut{% - M€ is more valuable for the
France & 4 . s 308 <200 <200 . ll?ﬂation forecasts tha_n information about y - 3. The final p.art VI of Table 7

: 5 200 gives the errors made if the expected rate of inflation is proxied by peﬁ_z “Pyo
Germany 6.128 6.013 6.064 5.955 6.001 5.987 instead of 4x [p‘i - -p? 1) asin parts II-V.
Italy 4.887 4.795 4.768 4.637 4,584 4.546 The Table shows the average size of the one-period-ahead errors pro-
Netherlands 5.710 5.711 5.736 o — Py duced by applying the state equation. If multi-period projections are available

U.S.A 5065 G for money and output, then the model can be used also to generate multi-
) ) Stad Al 6,330 6.435 period predictions for the price level, The errors in such multi-period forecasts

depend also on the magnitude of the residuals in the observation equation, €,

since 0,.€; is incorporated permanently into the expected future path of the

price level. The root mean square errors of the observation equations (not shown
in Table 7) are similar in magnitude to the errors of the state equations. As-




Table 6 Table 7
The Evolution of the D
n of the Degree of Permanence of the Shocks, As Measured By 8 q Prediction Errors of the RPE Algorithm (in perc.)
country 1966-1 1968-111 19711 19731 1976-1 1978-111 =
| Belgium France W. Germany Italy Neth, US.A.
Belgium 0,985 0.927 1.126 1.233 1.235 1.259 .
(0.120) RMSE (M-M?) 1.541 1.129 1.821 1.114 2.087 0.503
RMSE (¥ -¥¢) 1.451 1.462 1.347 1.826 1.893  0.998
France 1.101 1.082 1.248 1.352 1.305 1.232
(0.151) I RMSE (p-p.p) 2,053 2.000 1.399 3.006 2,083 1.526
Robust estimate of the
W. Germany 0.908 1312 1.351 1.320 1.389 1413 standard error (p-p_1) 1.958 2655 1.791 3.518 2671 2,001
D:127) RMSE A(p-p_l) 1.784 0.863 0,914 1.019 1.584 0437
Italy 1.234 1.207 1.090 1.167 1.283 1,355 Robust estimate of the
(0.140) standard error A(p-p_l) 1.382 0.796 1.007 1.065 1,700  0.436
Netherlands 1.139 1.065 1.138 1.097 1.255 1.367 11 RMSE state equation  (p-p®) | 1.973 1.085 1.379 1.580 1.667  0.651
0.154) Robust estimate of the
standard error )| 2161 1.120 1.401 1.616 1.947 0.684
U.S.A, 1.008 1.051 1.128 1.099 1.086 1.114
(0.182) ITI RMSE state equation @-p%) | 2144 1.314 1.818 1.690 2412 0.806
Robust estimate of the
standard error @-p%) | 2450 1.626 1.979 1.695 2649 0733
IV RMSE state equation @-p®| 2.551 1.516 2.135 1.763 2417 0.857
Robust estimate of the
standard error @-p% | 3.104 1.678 2.148 1.911 2,534 1.007
V RMSE state equation @-r%| 2.780 1.656 2,391 1,748 2,888 0904
Robust estimate of the
standard error (p-p%) | 3.383 1.656 2.486 1.531 3.139 0.988
VI RMSE state equation -r%| 1.967 1.105 1.553 1.594 1.647  0.687
Robust estimate of the
standard error @-r9| 2158 1.182 1.694 1.714 1.929 0.746
I 3 two naive models
Il $ complete model
I :  withouty -y*
IV :  withoutM.-M*%
v :  withouty - y€ and M - M¢
VI :  model with p‘:_ g g:re2 as proxy for expected inflation.
Note:  All entries have been multiplied by 100,




suming equality between the RMSEs of the state and observation equations,
plus a value of one for the parameter 64, which is about average for the six

countries, we can compute a rough estimate of the standard error in a n-period-
ahead-prediction with the help of the formula:

ELp iy - EP ) = RE(P 1 - Dy )2

If, for -example, the residual errors of the one-period-ahead predictions are
about 1.5 percent - as is roughly the situation for the five European countries
studied - and if we assume that projections for M and ¥ are available for the next
three years, then the estimated standard error of the corresponding price level
three years from today would be:

1.5 /12 =5 percent

The residual errors in the United States are considerably smaller; in that country,
the estimated standard error of a conditional forecast of the price level three
years into the future would be 0.7 \/1—: 2% percent. Parameter uncertainty
would add something to this estimate, but not much, because the parameters
tend to be well determined and change comparatively little over periods that
do not extend beyond a few years.

Finally, Table 8 shows outcomes for the United States over the second
half of the sample period. All summary statistics in Tables 2-7 refer to a period
that terminates in 1978 IV, but in Table 8 I have continued the computations
up to 1981. The results show that the RPE algorithm is capable of tracking the
actual path of the United States price level quite well. There is no evidence of
persistent runs of positive or negative forecast errors.

VI. CONCLUSIONS

During the early seventies, exciting work was done in the field of
adaptive parameter estimation by Cooley, Prescott, and others (see Swamy and
Tinsley, 1980, for a recent review of this literature). Interest in adaptive esti-
mation waned somewhat in recent years for two reasons: first, there were
severe technical problems in implementing adaptive estimation, particularly in
an "on-line" context, and second, because the important advances in formu-
lating and estimating rational expectations equilibrium models did not fit in
well with the assumption that agents are unsure of and have much to learn

about relevant parameters as time goes on.

Table 8

U.S.A. - Quarterly Average Data For the Expected Levels of the Money Stock,
Real GNP and the GNP Deflator

1971-

1972-

1973-

1974 -

1975-

1976-

1977-

1978-

1979-

111

lnp; Inpf Lup§ 1] 1ny§ Inc$
(GNP ‘state ‘observation (GNP-
deflator) equation’ equation’ (M1B) 1972 dollars)
4.499 4.496 4.504 5.332 6.992 6.159
4.512 4,516 4,515 5345 6.984 6.160
4.520 4.529 4.522 5357 6.988 6.165
4.533 4,535 4.549 5370 7.001 6.170
4.548 4.556 4,535 5.389 6.987 6.160
4.561 4.570 4.571 5.409 7.014 6.181
4.570 4.588 4,580 5.438 7.021 6.177
4.579 4,585 4,577 5.448 7.031 6.173
4.592 4.588 4,585 5.450 7.041 6.182
4.599 4.607 4,600 5479 7.064 6.197
4.608 4,608 4611 5.496 7.088 6.203
4.620 4.621 4,621 5.517 7.098 6.206
4.634 4.633 4,625 5.543 7.118 6.212
4,651 4,640 4,647 5.563 7.149 6.229
4.668 4.666 4.666 5.570 7.141 6.241
4.688 4.680 4.680 5.578 7.144 6.250
4.706 4.701 4.716 5.589 7.152 6.267
4.730 4.730 4.726 5.609 7.135 6.264
4.756 4.747 4.751 5.613 7.137 6.277
4.784 4.777 4,785 5.622 7.128 6.289
4.809 4,812 4.819 5.635 7.110 6.296
4.822 4,840 4.828 5.640 7.081 6.292
4.840 4.838 4.828 5.659 7.108 6.295
4.858 4.849 4,847 5.681 7.143 6317
4,867 4.866 4.861 5.684 7.149 6.336
4.876 4,873 4.881 5.699 7.176 6353
4.888 4.889 4.889 5,718 7177 6.355
4,903 4,900 4.903 5.727 7.181 6361
4917 4.919 4.916 5,748 7.190 6370
4,934 4.930 4.931 5.775 7.220 6382
4.947 4,947 4.945 5.792 7.231 6.394
4,962 4.959 4.967 5.808 7.249 6.406
08
4.976 4,981 4,982 5.831 7.248 6.4
5.001 4,993 4,988 5.849 7.255 6.410
5.020 5.018 5.020 5.874 7.282 6.435
5.043 5037 5.035° 5.893 7.289 6.443
5.064 5.060 5.058 5.910 7303 6.462
5.082 5.078 5.091 5.921 7.311 6.477
5.101 5.108 5.106 5,950 7.300 6.473
5.121 5.122 5121 5.973 7314 6.477
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Table 8 continued Fortunately, recent work by Ljung, Moore, Weiss, and Anderson
R . . & Z has resulted in a new form of Kalman filtering that produces "on-line" estimates
1np, Inp, Lnp, Ini; ny; Lne, of both parameters and state variables without the convergence problems that
(GNP ‘state ‘observation (GNP- i i i
S earlier versions of extended Kalman filtering. Furth
deflator) equation equation’ (M1B) 1972 dollars) marred ear erng IHEHGAE, he Workel

Brunner, Cukierman, and Meltzer has rightly stressed the enormous importance

1980'; g:igg ;igg g:}gg g:ggg ;g;’ 2::33 of the transitory/permanent confusion and the need for agents to become
iid 5.188 5.183 5.196 5.973 7.285 6.502 familiar with changes in the relative importance of transitory and permanent
v 5214 5218 5216 Biae Ll 6504 shocks. For these two reasons I opted to neglect the cross-equation restrictions
1981-1 5.237 5.241 5.227 6.061 7311 6.510 and investigated the potential of adaptive estimation for a simple problem in
| sam i %250 5061 7.336 6534 monetary economics (see Sargent, 1981; Hansen and Sargent, 1980; Tumer

and Whiteman, 1981 ; for the importance of cross-equation restrictions and their
apparently unavoidable neglect in a learning context).

The results in section IV of the paper show that univariate expectations
of future levels of money and output must take into account that the relative
weights of permanent and transitory shocks change continually. A static past
during which the laws of motion of such variables did not change, and which
would provide, therefore, a solid basis for analysis of future changes in these
laws of motion simply does not exist. We may be able to roll back our theoreti-
cal models to the levels where parameters of technologies and preferences remain
invariant, but the world does not oblige by offering an historical base period
during which the constraints also remained constant. The world changes all the
time; if we do not learn, we are lost.

Recursive and adaptive estimation of a simple three-equation model in
section V shows that the RPE method is capable of producing well-behaved
estimates of both the model parameters and the unobservable state variables.
It follows that it is no longer necessary to regard each and every unpredicted
shift in the demand for money as prima facie evidence of the impossibility of
computing price level paths that correspond to medium-term targets for money
growth. The relationship between monetary actions and the price level is pre-
dictable and can incorporate rational learning about recent shifts in the demand
for money. With recursive and adaptive estimation of the link between money
and prices, it becomes easier to implement "rules rather than discretion” (see
Kydland and Prescott, 1977, who suggest that no changes in monetary policy
be executed until after a two-year waiting period). With that perspective in
mind, the results of the paper indicate that Kalman filter methods can be pro-
fitably put to work on the two major problems which Karl Brunner mentions
as predominantly confronting monetary policymaking at this time: choosing,
and adhering to a monetary strategy; and the reliable interpretation of monetary
events (Brunner, 1981).




DATA APPENDIX

The data for this study have been taken from Den Butter and Fase
(1981), apart from the U.S. data that were kindly provided by the Federal
Reserve Bank of St. Louis. The series from the money stock consists of quarterly
averages of monthly M2 data, apart from Italy where Den Butter and Fase used
end-of-quarter figures, and the United States where M | is used. y refers to real
gn.p. apart from [taly and France, where Den Butter and Fase work with data
on g.d.p. Den Butter and Fase employ seasonal dummy variables in their esti-
mation of the demand-for-money function; [ have used the "fixed-multiplicative"
method to deseasonalize the money data so that the least possible damage is
done to the underlying time series structure of the money supply process. All
the real gn.p. or g.d.p. data are seasonally adjusted in the original sources.
Details about three minor corrections to the data follow:

I have made one change in the real output series for the Netherlands,
The value which Den Butter and Fase give for the first quarter of 1970
differs considerably from that given by the Central Planning Bureau
(CPB), an agency of the Dutch Ministry of Economic Affairs. Both
series consist of estimates only, since no official quarterly national
accounts data exist for the Netherlands. As the estimate by the Dutch
Central Bank for 1970 used by Den Butter and Fase appears implausi-
ble, I have substituted the CPB estimate for real g.n.p. in that quarter.
Den Butter and Fase and I have corrected a discontinuity in the money
(M?2) data for Belgium in 1969.

Finally, I have presumed that agents were aware at the time of the
exceptional nature of the negative shock to real output in France
during the second quarter of 1968. In order to avoid letting this ex-
ceptional event unduly influence the expectations regarding real output
in France, I have replaced the value for 1968 1I by a straight inter-
polation of the values for 1968 I and 1968 III. The Multi-State-Kalman
filter method has been applied to the French output series after cor-
rection for this episode.




